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A B S T R A C T

A previous work had designed an experimental paradigm to
study the active exploration and simultaneous integration of in-
formative cues appearing in a two-dimensional scene over time.
We improved this paradigm by devising a graphical way to re-
veal the information of visual cues only upon fixation. We found
that color-encoded information can be effectively hidden by visu-
ally surrounding it with multiple objects whose colors are equally
bright but all different from each other, and that such confounders
can achieve to hide color information at a pace similar to how
visual acuity decreases with eccentricity. We quantified the ef-
fectiveness of this method over varying sizes and geometries of
visual cues, and we found a possible way of taking into account
the nature and concentration of cone cells in the retina to choose
a good set of colors to encode information.
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1 I N T R O D U C T I O N

Decision making, at a low level, is a process driven by the integration of
many small pieces of information. In the context of the visual system, the
gradual accumulation of information has been the topic of a large amount
of studies. However, most of these studies have relied on the subject fixating
a central point and occasionally signaling a decision via a saccade [1, 2, 3],
rather than being able to freely explore a scene with the eyes. The quest for
a plausible model of free exploration with the eyes is thus still open, and
promises to be a more natural way to study the eye.

Moreover, existing studies on free eye movements have until now featured
complex scenes [4] or have anyway started out from something more com-
plex than just basic geometric shapes [5, 6]. Such complex scenes are cer-
tainly very close to the natural ones we see in real life, but have the dis-
advantage of complicating the analysis of even the simplest behavioral task
where a subject looks at these scenes. Despite the invaluable contribution
of such works, the study of free eye movements would benefit from having
a baseline experimental paradigm where the scene only contains simple
shapes, making the analysis of eye data straightforward.

a new paradigm To answer this need, we designed and implemented a
behavioral paradigm aimed specifically at studying the free exploration and
integration of informative cues gradually appearing on a plane [7].

The paradigm we designed aims at facilitating the study of perceptual de-
cision making, and therefore puts low requirements on working memory
(except for the necessary memory workload related to the update of a deci-
sion variable over several seconds). It is also designed to require the subject
to both explore and integrate information at the same time. Furthermore it
has a clearly defined best strategy. Finally the paradigm looks promisingly
generalizable to different animal species: it can be performed by a human
subject who has been given instructions, but it also seems easy to carry out
without instructions by any non-human primate.

Although the visual stimuli presented in this paradigm are far from look-
ing natural, they are designed to encourage the subject to explore the whole
scene (something that animals do most of the time, in a natural setting).

designing the visual stimuli We designed the paradigm with these
requirements in mind, and specifically focused on defining the appearance
of the stimuli by studying several visual properties of the single cue — like
its size, shape, color, and position in the scene.

Most of this document illustrates the experiments carried out to study
what could be a good appearance for the stimuli in the paradigm. Namely
we analyzed the behavior of one human subject who had to discern the
identity of cues with different appearances and presented at varying dis-
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2 introduction

tances and sizes. These experiments gave us a good understanding of how
to present color-coded informative cues that encourage a subject to explore
the scene. We could then run some trials of the actual task proposed by our
paradigm, using the stimuli that we designed.

modeling behavioral results The choices of 5 human subjects who
performed the task was then compared to those of a Bayesian model, with
the goal of testing the paradigm and knowing how Bayesian were the sub-
jects in their choices.

structure of this document The next chapter (chapter 2) describes
the paradigm. Chapter 3 describes computational models whose behavior
can be compared to a subject’s behavior. The following two chapters report
empirical results on how the properties of a cue influence its perception
(chapter 4), and some preliminary results on how subjects respond to trials
of our paradigm (chapter 5). These results are then discussed in chapter 6.
Finally, appendix A describes a Matlab implementation of the paradigm.



2 PA R A D I G M

Here follow a description of the paradigm (2.1) and a brief list of experimen-
tal conditions that were kept constant (2.2). A more detailed explanation of
various choices behind the design of the paradigm can be found in chapter
4.

2.1 task specification

The subject is sitting in front of a screen. The screen is always black, except
for a central circular region where colored cues may appear over the black
background. This central region is subdivided into four trigonometric re-
gions {ri}i=1...4, whose borders are always visible to the subject. The borders
are thin and dim enough to not distract the subject or give afterimage effects,
while still being an effective reference to know in which region a cue is lying.
The diameter of the circular region is 12.02 degrees of visual angle (12 cm,
with the subject’s eyes both at 57 cm from the center of the screen).

The experimenter tells the subject that some colored objects (the cues) will
appear on the screen, and that each object can have one among two possible
colors (red and green, shown before starting the trials). The subject is also
shown examples of such objects, and the purpose of their appearance is
explained. Then the subject is told that at each trial one of the four regions
(the target region, unknown to the subject) will have a proportion of red cues
higher than that in the other three regions. The subject’s goal is to carefully
observe the cues that appear on screen over a short time (1 to 8 seconds),
and then decide which region is the target region — i.e. which region has
such a disproportion of red cues.

Note that the term “target region” is a slight abuse of notation, and should
be read “region containing the target”. This more correct notation will allow
future versions of the paradigm to substitute discrete regions with a contin-
uous 2D plane where the identity distributions are two bivariate Gaussians
(one for each identity), and the target is the mean of one of these Gaussians.

The only proportion of identity we tested for target regions was 80:20, as a
previous work on this paradigm [7] found that this was the most interesting
regime to explore. The only proportion tested for non-target regions was
50:50.

2.1.1 How a sequence of trials is presented

Here is a higher-level view of how a complete experiment involving A trials
divided in B batches of C trials would be presented to a subject:

1. The subject, who has been instructed and is now looking at the screen,
sees a yellow cross.

3



2.1 task specification 4

2. When the experimenter decides, the yellow cross becomes white and
dimmer. This change signals the start of the first trial.

3. The subjects sees n ∈ [1, 8] cues, irregularly appearing over n seconds
(in general, it is not true that one cue appears every second).

4. As soon as n seconds have elapsed, the white thin cross becomes blue
and brighter. This change signals that the subject has 2.4 seconds to
press one of four buttons to guess the target region.

5. As soon as the subject has pressed one of these four buttons (or that 2.4
seconds have elapsed) the cross becomes white and dimmer to signal
the start of the next trial; the trial starts after the cross has stayed white
for 0.25 seconds.

6. When C trials have been shown and the last choice has been signaled
by the subject (or the last answering time window has elapsed), the
blue cross becomes yellow. A yellow cross indicates that the subject
may take a break.

7. When the subject will have rested for a few seconds or minutes and
she or the experimenter will have pressed a button, the yellow cross
will become white and dimmer. This change signals the start of the
first trial in a new batch of C trials.

After B batches of C trials, the subject sees a black screen. This is the end of
the experiment, and all A = B · C trials have been shown. Note that when
the subject doesn’t provide an answer within the allowed time window, the
trial is scheduled to be shown again later to the subject. For this reason, a
subject might look at more than A trials over the course of an experiment.

The next subsection describes the creation and presentation of a single
trial in more detail.

2.1.2 Creation of a trial

On screen the subject sees, over the course of n seconds, a sequence of n
informative cues (dots of different colors) {ci}i=1...n. Each of these cues has
a position (a pair of Cartesian coordinates), as well as an identity (a certain
color), and a lifetime defined by its onset and duration over the course of a
trial.

Note that, although the number of seconds in a trial coincides with the
number of cues in that trial, the cue onsets and durations are random: 5

cues may appear in the first 3 seconds (overlapping in time), or there could
be no cues at all for 2 seconds.

In this work the lifetime center of each cue was drawn from a uniform
distribution, and its duration from a low-variance normal distribution. This
way, a trial looks like an irregular sequence of cues with similar duration
that sometimes overlap (in time, but never in space).

cue position In each trial, every cue is randomly assigned to one of the
four classic trigonometric regions. Then its Cartesian coordinates are drawn
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Figure 1: Scatter plot of the 77 equidistant points that can be sampled as cue posi-
tions. The center of the plot is the origin.

uniformly at random (without replacement) from 77 equidistant points that
span the area of the chosen region. Note that drawing without replacement
guarantees that no two cues will be superimposed.

The points in each region, taken together, form a 2D triangular lattice (a
repeating arrangement of points on the plane) that spans the whole circu-
lar region where the stimuli can appear. In other words: these equidistant
points are the vertices of a regular tiling of triangles, and they are collectively
enclosed in a circle (as depicted in figure 1). Each point in the grid is 1.12
degrees of visual angle away from each of his neighbors, a distance larger
than the diameter of a human fovea (about 0.15 degrees).

cue identity Once the position of a cue is set, its identity is drawn from
a small set of colors {idi}i=1...k. In other words, each cue belongs to a certain
identity class (e.g. the class id1 of red cues, the class id2 of blue cues. . . ).
Importantly, the identity of each cue is not just random: it depends on the
position of the cue on the plane. More specifically, two generalized Bernoulli
distributions1 specify the proportions in which k identities will appear on the
plane:

• a distribution PT with parameters {pT,i}i=1...k specifies the probabilities
for a cue to have identity idi in the target region;

• a distribution P¬T with parameters {p¬T,i}i=1...k specifies the probabili-
ties for a cue to have identity idi in a non-target region.

Each cue also features a non-informative border: six additional dots of
different colors, positioned around the informative colored dot, make it dif-

1 A generalized Bernoulli distribution is a discrete probability distribution that assigns a prob-
ability pi to each of k > 0 values that a random variable can take. The parameters {pi}i=1...k
must sum to 1. (The case of k = 2 values is the usual Bernoulli distribution.)
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Figure 2: A single cue, with its non-informative border (external dots) and its infor-
mative content (internal dot).

ficult for the subject to recognize the informative color without fixating it
with the fovea (see figure 2).

cue lifetime Finally, as mentioned above, the lifetime of each cue is de-
fined by drawing two numbers at random: one from a distribution of lifetime
centers, and one from a distribution of durations. Distributing the centers
according to a uniform distribution and the durations according to a narrow
enough normal distribution makes a trial appear like an irregular sequence
of (possibly overlapping) cues — although the onset of each cue is still ran-
dom, as can be seen from figure 3. Distributing the onsets and offsets in
such a way keeps the momentary number of stimuli on screen roughly the
same, as can be seen from figure 4.

2.1.3 Appearance of cues

The non-informative dots in the border are such that:

• the position of each dot is equally distant from the positions of its two
neighboring dots;

• the color of each dot is equally distant (in color space) from the colors
of its two neighbors;

• all six colors have equal luminance to a human eye;

• all six dots are (filled) circles with radius approximately equal to the
radius of the internal dot.

All cues shown on screen have such a dotted border, and the clockwise order
of the colors forming the border stay the same for all cues. To ensure that the
colors don’t have different effects when shown at different positions along
the border, the external confounders are randomly shifted for each cue (i.e.
the clockwise order of colors doesn’t vary, but the position of colors along
the border does).

Additionally, the external confounding colors are also shifted in color space
by a random amount (which is the same for all external dots in a cue). In
other words: given that all six external dots have equal luminance, and that
we use a tristimulus color space (the CIE L*a*b* space [8]), the colors of these
dots lied on a circle in color space — this allowed to change their nature
without changing their mutual relationships by just shifting the position of
such colors along the circle (like shifting the dots along the border, but now
in color space).
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(a) Onsets and positions of 20 cues in each of 1000 trials.

(b) Offsets and positions of 20 cues in each of 1000 trials.

Figure 3: Lifetime and position of 20 cues in each of 1000 trials with the same pa-
rameters. Time is either the onset time (3a) or the offset time (3b), and
goes from 1 to 1000 along the X axis: each cue can appear in one of 1000

time points. Position is the order of appearance of a cue (first cue to
appear, second cue, last cue. . . ), and is represented along the Y axis.



2.2 experimental conditions 8

Figure 4: Momentary number of cues visible at each time point, for all 1000 time
points of a trial. The values on the vertical axis are averaged over 1000

trials.

The external confounding colors were measured with a spectrophotometer
(see section 2.2) only when not shifted in color space. However, shifting
them along a circle in the CIE L*a*b* color space guarantees (theoretically)
that their mutual relationships stay the same.

2.1.4 Goal of the task

What each subject sees is basically a sequence of cues whose identities are
sampled from two probability distributions: the distribution of identities in
the target region, and the distribution of identities in the non-target regions.
Given that the subject is asked to find which region has the biggest amount
of red vs. green cues, the goal of the task can be understood as estimating the
two original distributions of colors. (This interpretation gives an intuition
about why a statistical inference model would be the best strategy to solve
the task; see chapter 3.)

2.2 experimental conditions

The experiments took place in a dark room. Each subject was sitting on a
chair, with her head positioned on a chin rest at 57 cm from a screen. The
screen was a cathodic ray tube with a measured refresh rate of about 84.7 Hz
(Sony Multiscan G400 connected to Matlab via VGA, reported refresh rate of
85 Hz). The stimuli to be shown on screen were specified with ScreenDraw,
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the graphical interface of MatUdp (a Matlab toolbox that brings together the
capabilities of Psychtoolbox v3 and Simulink Real-Time; see appendix A).

The radius of the circular scene where cues could appear was 12 cm. The
grid of possible locations where each cue could appear was a 2D triangular
lattice where each vertex was 11.16 mm distant from each of its 6 neighbors.

We used a 45°/0° spectrophotometer (X-Rite i1 Pro 2) to measure the col-
ors shown, with the main requirement that all colors presented on screen
have the same luminance. The measurements reported only very small devi-
ations in luminance among the colors used.

Each subject was instructed about the task before starting the experiment,
and was given 2-3 minutes of break between each batch of 52 trials. The
whole experiment consisted of 8 batches of 52 trials, for a total of 416 tri-
als. For each subject, the experiment lasted less than an hour in total. Two
subjects were experts (subjects 2 and 5), and three were naive.

https://www.xrite.com/categories/calibration-profiling/i1basic-pro-2




3 M O D E L S

First, we asked in a previous work [7] the question of what plausible algo-
rithms or frameworks could model the free exploration of a dynamic scene
in search of evidence. This chapter explains two computational models to
which a subject’s behavior can be compared:

• the Bayesian integrator;

• the Sequential Probability Ratio Test (SPRT);

Each of these models is an algorithm that observes a sequence of cues and,
for each informative cue, updates its beliefs about which region might be
the target region. As will be seen below, the beliefs are generally four non-
negative numbers, each indicating the belief that a region is the target.

3.1 theory

the bayesian integrator Given a sequence of cues {ci}i=1...n, at each
time step t the Bayesian integrator updates the probability of region rk where
cue ct appeared according to the rule

P(rk = T|ct = idj, ct ∈ rk) =
P(ct = idj|rk = T) · P(rk = T)

P(ct = idj)
(1)

where T is the region containing the target, and id is the list of possible cue
identities. The total probability of cue ct having identity idj is P(ct = idj) =

P(ct = idj|rk = T) · P(rk = T) + P(ct = idj|rk 6= T) · P(rk 6= T). The prior
P(rk = T) is usually assumed to start out as a uniform distribution over all
possible regions.

The arrival of cue ct also triggers the update of beliefs in the other regions
— as all regions are potential targets. The probabilities of all the other regions
ri in the plane are updated according to the rule

P(ri = T|ct = idj, ct /∈ ri) =
P(ct = idj, ct /∈ T) · P(ri = T)

P(ct = idj)
(2)

the sequential probability ratio test The SPRT [9] is equivalent at
every step, in its beliefs, to a Bayesian integrator, but has the added property
of being optimally efficient. It is relevant to compare its predictions with
human choices in our paradigm because there is evidence to believe that the
brain implements a similar strategy [2].

The decision variables updated by the SPRT do not sum to one. They are
p-values representing the belief in each region to be the target region. The
beliefs held by the SPRT are equivalent to those of the Bayesian integrator

11



3.2 example 12

in the sense that the ordering of beliefs across regions is the same for both
models (as will be seen in an example below).

Given a sequence of cues {ci}i=1...n, the SPRT updates the decision variable
Dk for region rk where the last cue ct appeared according to the rule

Dk = exp
t

∑
i=1

ln
P(ct = idj|ct ∈ rk, rk = T)
P(ct = idj|ct ∈ rk, rk 6= T)

(3)

Performing the exponentiation at the end, after having accumulated all the
log-likelihoods, is how the SPRT manages to be more efficient than the
Bayesian integrator.

3.2 example

As an example, consider a trial where the scene is divided in four regions.
Region r2 (upper left quadrant) will be the target region in this example.
Let’s assume there are two identities (id1 and id2, illustrated as resp. red
and green dots), distributed uniformly in all regions except in the target
region, where cues have 90 % chance of having identity id1 and 10 % chance
of having identity id2. So if a red cue appears in one region, the Bayesian
integrator increases its belief in that region being the target; if the cue is
green, it would decrease its belief in that region.

Before the first cue appears, the beliefs held by the Bayesian integrator are
simply its prior (here a uniform prior) as illustrated in figure 5a, topmost
histogram.

First, a red cue appears in region r1. This pushes the Bayesian integra-
tor to increase its belief in region r1 being the target from chance (0.25) to

0.9·0.25
0.9·0.25+0.5·0.75 = 0.375, while the other regions go down to 0.5·0.25

0.9·0.25+0.5·0.75 =

0.2083.
Let’s say that a green cue now appears in region r4. The Bayesian integra-

tor would then decrease its “trust” in region r4 to 0.1·0.2083
0.1·0.2083+0.5·(1−0.2083) = 0.05.

The beliefs in the remaining regions would go to the following values:

• r1: 0.45;

• r2: 0.25;

• r3: 0.25.

Note that the beliefs of the SPRT are reported step by step in figure 5b,
but in practice would be computed at the end, from the cumulative sum
that represents the change of belief in each region.

3.3 simulation

analysis of how the models perform We analyzed the average per-
formance of the Bayesian integrator and of the SPRT with different cue iden-
tity frequencies. Specifically, we varied the frequency of id1 in the target
region between the values 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5 (with the frequency
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(a) Updates for the Bayesian integrator. (b) Updates for the SPRT.

Figure 5: Example of how two models update their beliefs in each region, as new
cues arrive. The left column refers to the Bayesian integrator, while the
right one refers to the SPRT. Time goes from top (“no cues seen”) to bot-
tom (“cue n. 2”). Each subplot represents the degree of belief in each
region ri, with i ∈ 1 . . . 4.



14 models

of id2 increasing accordingly); we also varied the frequency of id1 in non-
target regions between 0.45, 0.5, and 0.55 (again with the frequency of id2 in-
creasing accordingly). In figures 6 and 7 we illustrate how the performance
changes as the model sees more and more cues.

For the Bayesian integrator we performed an additional analysis about the
difference between beliefs in target and non-target regions. This is illustrated
in figure 8. Here the vertical axis represents P(T) − max(P(¬T)), i.e. the
difference between the belief in the real target region and the highest belief
is some other region. The horizontal axis illustrates this: the larger the
disproportion between P(id1) and P(id2) in the target region, the higher the
chance that the Bayesian integrator chooses the correct target region.
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(a) Performance over number of cues, when cues in non-target regions have a prob-
ability of 0.45 to have identity id1, and 0.55 to have identity id2.

(b) Performance over number of cues, when cues in non-target regions have the
same probability to have identity id1 or identity id2.

(c) Performance over number of cues, when cues in non-target regions have a prob-
ability of 0.55 to have identity id1, and 0.45 to have identity id2.

Figure 6: Performance of the Bayesian integrator over the number of cues seen, aver-
aged over 1000 trials per condition — where each condition is a particular
distribution of cue identities in the target region (region 3), and is illus-
trated as a colored line in the plot. Each of these three plots represents a
different distribution of cue identity frequencies in the non-target regions.
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(a) Performance over number of cues, when cues in non-target regions have a prob-
ability of 0.45 to have identity id1, and 0.55 to have identity id2.

(b) Performance over number of cues, when cues in non-target regions have the
same probability to have identity id1 or identity id2.

(c) Performance over number of cues, when cues in non-target regions have a prob-
ability of 0.55 to have identity id1, and 0.45 to have identity id2.

Figure 7: Performance of the SPRT over the number of cues seen, averaged over
1000 trials per condition — where each condition is a particular distribu-
tion of cue identities in the target region (region 3), and is illustrated as a
colored line in the plot. Each of these three plots represents a different dis-
tribution of cue identity frequencies in the non-target regions (0.45:0.55,
0.5:0.5, and 0.55:0.45).
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Figure 8: Difference between belief in the true target region and highest belief in a
non-target region.





4 P S Y C H O P H Y S I C A L R E S U LT S O N
C U E A P P E A R A N C E

The results we report in this thesis are mostly about the initial study on
the appearance of the stimuli. This is what this chapter is about. Results
on the performance of the subjects during trials of the actual paradigm are
preliminary in nature, but can be found in chapter 5.

requirements We asked the question of how to show informative cues to
a subject so that the information contained in a cue would be revealed only
when the subject fixates it. A crucial requirement for our paradigm was
to strongly encourage the subjects to fixate the cues, rather than just letting
them sample some global property of the whole scene at a glance. We thus
initially put effort in designing the appearance of the informative cues.

The appearance of a cue should force a subject to fixate the cue in order
to know its identity; however, once fixated, the identity of the cue should
be obvious (i.e. recognizing its identity should require as less thinking as
possible).

the two designs One possible way to meet this requirement is to sur-
round the informative part of each cue with a non-informative border. Hav-
ing adopted this idea (but there can be many other solutions), we performed
a preliminary study to know which one between two different types of bor-
ders could best hide the identity of a cue until fixated. The two types of
borders we studied are:

• a “dotted” border (figure 9a) with six dots of different colors, with the
same shape of the informative part of the cue (i.e. a circle);

• a more homogeneous “segmented” border (figure 9b) divided in six
circular segments of different colors.

As will be seen in the next section, the “dotted” border was found to be
more effective at hiding the cue identity.

The next section 4.1 analyzes these two possible borders, along with two
other important factors in the design of a cue. Section 4.2 then goes on to
analyze other factors that affect the appearance of a cue.

4.1 position, confounding border, and identities

We deemed the following factors to be the most influential for the perceived
identity of a set of cues:

• the size of each cue;

• the position of each cue, relative to the point being currently fixated by
the eyes;

19



4.1 position, confounding border, and identities 20

(a) Example of cue with dotted
border.

(b) Example of cue with seg-
mented border.

Figure 9: The two types of confounding borders that we created and analyzed.

• the colors used as cue identities;

• the type of uninformative border used to hide the identity of each cue;

• the “sparsity” of the various dots constituting each cue (i.e. how close
together the components of a cue are);

• the number of confounders in the external border of each cue.

An initial study of these factors revealed that the only relevant aspect in
the position of a cue was its eccentricity (distance from the location being
currently fixated), and that one type of confounding border was systemati-
cally better than the other at hiding the identity of a cue.

We verified these two findings by showing 1600 cues to one subject (the
author) who was fixating a reference point in the center of the screen. At
each cue, the subject had to decide which was its identity between two pos-
sible colors (red vs. green in a first block of 800 trials; yellow vs. blue in a
second block of 800 trials). The cues were presented at different locations
in the scene, and with different confounding borders. More precisely, this
was a randomized full factorial 4× 2× 2× 2 experiment with 25 cues per
condition, whose factors are reported in table 1.

position of a cue The performance at discriminating identities was
not significantly different from region to region (as can be seen from fig-
ure 10), but changed significantly as a function of eccentricity (figure 11).
The colored lines in the first one of these two figures illustrate how the non-
significant difference in performance across regions also holds at different
eccentricities.

type of border The “dotted” border was found to be more effective at
hiding the identity of a cue, as can be seen from figure 12. This might be due
to the fact that the confounders in the “dotted” border share not only one
“feature space” with the identity (the color space), but also have its same
shape (a circle), thus making it even harder for the eye to understand which
colors are non-informative and which color is informative.
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factor n. of levels explanation

region 4 Each cue was presented in one of four trigono-
metric regions.

eccentricity 2 Each cue was at an eccentricity either above or
below 67.5 % of the maximum possible eccen-
tricity. This threshold was chosen so that the
grid of possible locations (see subsection 2.1.2)
had about half of its vertices below the thresh-
old.

border 2 Each cue had a confounding border that could
be either “dotted” or “segmented” (see subsec-
tion 2.1.2).

identity 2 The identity of each cue could be either red
or green, and the subject had to estimate the
identity of each cue.

Table 1: Factors involved in the initial 1600-cue experiment on position, border type,
and colors. Note that a certain amount of randomness is involved in the
experiment: inside each region and eccentricity bin the location of a cue
is random; and for each border type, the external dots/segments are ran-
domly shifted in their position and color.

Figure 10: Fraction of correct choices over regions, by cue eccentricity (averaged
over 1600 cues evaluated).
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Figure 11: Fraction of correct choices over cue eccentricity (relative to the fixation
cross), averaged over 1600 cues evaluated.

Figure 12: Fraction of correct choices for each type of border, averaged over 1600
cues evaluated.
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color L* a* b* R G B

red 50 30 0 0.6250 0.3880 0.4703
green 50 −30 0 0.1640 0.5194 0.4630
yellow 50 −15 25 0.4277 0.4903 0.2895
blue 50 −15 −25 0.1221 0.5029 0.6371

Table 2: Theoretical L*a*b* and RGB values of the colors used in the experiments.

(a) Choosing between red and green. (b) Choosing between yellow and blue.

Figure 13: Fraction of correct choices over eccentricity (relative to the fixation cross),
averaged over 800 cues evaluated.

Another way to explain why the dotted border was a better confounder is
the following. The eye might use the strategy to just interpret the border as a
single homogeneous obstacle that should not be taken into account; a single
uninterrupted circular border (like the “segmented” one), albeit of different
colors, can be attacked by this strategy more easily than can a border made
of dots: even when the dots are touching each other, they are only adjacent
at one pixel.

set of identities Two pairs of identities were involved in this initial
experiment: in the first 800 trials the subject had to discern between red
and green cues (“R/G”), while the remaining 800 trials involved yellow vs.
blue cues (“Y/B”). As can be seen from a comparison of figures 13a and
13b, the performance drop over the most influential factor (eccentricity) was
dampened in the Y/B trials, compared to the R/G trials.

Table 2 reports the coordinates of these four colors in the CIE L*a*b* and
RGB color spaces. Note that the L* coordinate (correlate of lightness) doesn’t
change across colors.

exclusion of bias on computer key The subject’s choices could have
been biased by a preference for pressing the right key against the left key.
We ruled out the presence of such a bias by performing a small experiment
where we reduced the redundant binary choice between two keys to a unary
choice on whether or not to press one key. The subject saw the same type of
stimuli as in the experiment reported above, but now had to press the space
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(a) Choosing between red and green. (b) Choosing between yellow and blue.

Figure 14: Fraction of correct choices over cue identity, averaged over 320 cues eval-
uated (640 cues in total).

bar only when a cue was red; the other cues were green. The same “unary
choice” experiment was performed with yellow vs. blue cues. As can be
seen in figure 14, The subject’s performance didn’t differ significantly from
one cue identity to the other.

conclusion Therefore the remaining factors could now be safely ana-
lyzed in experiments where the factors “position”, “border”, and “identity
pair” were fixed to a value:

• the “dotted” border was chosen as the best way to hide the identity;

• the cues were only shown along a horizontal axis centered on the fixa-
tion cross (instead of showing them across the whole plane), given that
the eccentricity was the only relevant aspect of a cue’s position;

• the identity pair R/G was chosen against Y/B.

4.2 remaining factors

To analyze the remaining factors, the same subject was shown a sequence
of cues of varying size, eccentricity, sparsity, number of confounders, and
of course identity. All these factors were combined in a randomized full
factorial 5× 9× 2× 3 experiment with 8 cues per condition, whose factors
are reported in table 3.

These 4320 trials were collected over 4 sessions of 1080 cues each, where
each session was a full factorial 5× 9× 2× 3 experiment with 2 trials per
condition). Each session was further subdivided into batches of about 100

cues (lasting about 4 minutes), with not more than a couple minutes of break
between each batch. An entire session lasted for about an hour.

size and eccentricity of cues Fist of all, as can be seen in figure 15

the size of the identities (at least in the regime we explored) was far less
important than the eccentricity of cues.

The average performance over eccentricity decreased from near-systematic
success (close to 1 on the vertical axis) to near-chance (close to 0.5 on the
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factor n. of levels explanation

size 5 The radius of the identity in each
cue had one of four possible radii,
from 0.15 to 0.25 degrees of visual
angle.

eccentricity 9 Each cue could appear at one of 9
possible eccentricities, from 0 (i.e.
right over the fixation cross) to 9 de-
grees of visual angle.

sparsity 2 Cues were parametrized by a “spar-
sity” factor s ∈ [1, ∞) that defines
how close the dots (external and
internal) are to each other. For
each cue, the sparsity was either
1 (external dots touch each other
and touch the central identity) or
1.4 (external dots don’t touch each
other and are further apart from
the identity).

n. of confounders 3 The number of external dots in the
confounding border of each cue
could be either 5, 6, or 7.

identity 2 The identity of each cue could be
either red or green, and the subject
had to estimate the identity of each
cue.

Table 3: Factors involved in the later 4320-cue experiment on the remaining factors.
Here eccentricity is not random anymore, but exactly defined by one of the
9 levels of the eccentricity factor.

(a) Fraction of correct choices over iden-
tity size, averaged over 4320 cues.

(b) Fraction of correct choices over eccen-
tricity (relative to the fixation cross),
averaged over 4320 cues.

Figure 15: Average fraction of correct choices over two different factors: identity
size, and eccentricity of the cue.
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Figure 16: Fraction of correct choices over eccentricity, colored by cue identity (av-
eraged over 4320 cues).

vertical axis). Figure 16 illustrates this, and it also illustrates a strong bias of
the subject towards seeing green cues at large eccentricities.

The fact that the performance curve always started from near-systematic
success (and not below) is not a coincidence, given that some unreported
experiments with smaller cue sizes pushed us to abandon those sizes whose
performance curves over eccentricity started far below 1. In general, as will
be discussed in section 6.1, the most desirable identity radius is one such
that the performance curve over eccentricity doesn’t start much below 1, but
at the same time decays as quickly as possible.

The steepest performance drop starting close to 1 occurred with an iden-
tity radius of 0.15 degrees of visual angle. See figure 17. Therefore this size
was deemed the most appropriate identity radius for cues in our paradigm.

sparsity and number of confounders The number of confounders
was found to be slightly influential on performance. Figure 18 shows this,
together with the fact that denser cues are significantly better at hiding their
identity. This second fact (that denser cues are better at hiding their identity)
might be due to the same reason why dotted borders were better than seg-
mented ones at hiding the identity: given that the eye might use the strategy
to just interpret the border as a single homogeneous obstacle that should be
ignored, a more densely connected border of dots can be attacked by this
strategy more easily than a sparser border.

Figure 19 shows the appearance of a cue with constant identity (red)
and constant identity size, but varying sparsity and varying number of con-
founders. Traversing the figure from left to right increases the number of
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Figure 17: Fraction of correct choices over eccentricity, by identity radius (averaged
over 4320 cues).

confounders; traversing it from top to bottom increases the sparsity. The
subject was presented all shapes in the first and third rows.
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Figure 18: Fraction of correct choices over number of confounders, by cue sparsity
(averaged over 4320 cues).
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Figure 19: Appearance of cues when varying the number of confounders and the
sparsity factor: columns 1, 2, and 3 have resp. 5, 6, and 7 confounders;
rows 1, 2, 3, and 4 have resp. a sparsity factor of 1, 1.2, 1.4, and 1.6.
The experiments in this work assessed the effect of all three depicted
numbers of confounders, and of sparsity factors 1 and 1.4 (first and third
row).





5 P R E L I M I N A R Y R E S U LT S O N T H E
PA R A D I G M

To test the final design of cues in the paradigm, 416 trials of the task were
run on 5 human subjects. The only factors varying in these trials were the
target region and the number of cues in the trial (hence the duration too, that
scaled with the number of factors). All the trials were randomly permuted
in a full factorial 4× 8 experiment with 13 cues per condition, whose factors
are reported in table 4.

The distribution of identities was fixed to 50:50 in the non-target regions,
and 80:20 in the target region. No other configuration was tested, given that
a previous work on this same paradigm [7] found that 80:20 was a critical
regime.

5.1 behavioral results

As expected, trials with more cues were easier. Figure 20 illustrates this,
together with the fact that the subjects didn’t see enough trials to provide
good enough statistics: for example, trials with four cues and region 1 as
a target were easier, but this would probably not be the case if there were
more trials per subject (or more subjects).

Another expected result is that the target region of a trial doesn’t seem
to significantly affect the performance. This can be seen by comparing the
average performance over target regions for the subjects and for the model
(figure 21).

5.2 comparison to the bayesian integrator

How Bayesian were the subjects in their choices? Comparing the subjects
to the Bayesian integrator can be done quantitatively by calculating the nor-
malized Euclidean distance between a vector of human choices and a vector
containing the choices made by the model on the same trials seen by the
subjects. Table 5 reports such distances.

factor n. of levels explanation

t. region 4 Each trial could have one of the four classic
trigonometric quadrants as its target.

n. of cues 8 Each trial had a number of cues between 1 and
8 (inclusive).

Table 4: Factors involved in the 416-trial experiment meant to test the complete
paradigm.

31
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Figure 20: Fraction of correct choices over number of cues seen, by target region
(averaged over 5 subjects, for a total of 2080 trials).

(a) The 5 subjects. (b) The Bayesian integrator.

Figure 21: Fraction of correct choices over which region (among the four possible)
was the true target, for a total of 2080 trials.

subject distance

1 0.0484
2 0.0550
3 0.0378
4 0.0590

Table 5: Normalized Euclidean distances between the vector of choices by subject
i and the vector of choices by the Bayesian integrator for the same se-
quence of trials, for each subject i. The distances have been normalized
from [0, 416] to [0, 1].
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The histograms in figure 22 report the absolute number of human choices
that diverge from the model (left bar of each histogram) and that agree with
the model (right bar).
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(a) subject 1 (b) subject 2

(c) subject 3 (d) subject 4

(e) subject 5

Figure 22: Absolute number of choices that diverge from the model (left bar of each
histogram) and absolute number of choices that agree with the model
(right bar).



6 D I S C U S S I O N

This chapter discusses the experimental results (6.1), but also some advan-
tages and disadvantages of the paradigm itself (6.2).

6.1 discussion of the results

With the goal of designing a paradigm to study how animals take a decision
after having actively explored a visual scene, we studied the appearance of
visual cues carrying information about a hidden distribution.

Our paradigm requires visual cues to become informative about the hid-
den distribution only when fixated, i.e. only when projected on the fovea.
Therefore, selected visual properties of two possible cue designs were probed
on one subject, and their impact in revealing cue information outside fixation
was assessed.

cue eccentricity and size The preliminary experiments with 800 + 800

cues revealed, unsurprisingly, that the only relevant property in the position
of a cue in the visual field is its eccentricity.

In fact, acuity of foveated visual systems decays exponentially with eccen-
tricity [10]. (This is the main reason why it makes sense to move the eyes
across a scene.) So when designing a paradigm to study eye movements, it
makes sense to present stimuli whose perception decays in an exponential-
like fashion with eccentricity (rather than in a logistic-like fashion, for ex-
ample). Figure 23 shows the curve of such a desired performance decay (in
red), together with two curves (in black) that would be less desirable1:

• the lower black curve that never goes any close to 1 is not desirable be-
cause our paradigm requires to present cues that are always perceived
correctly when fixated (i.e. one would like the curve to be very close
to 1 at eccentricity 0);

• the higher black curve that stays close to 1 even at non-zero eccentricity
is not desirable because cues should not be systematically perceived in
a correct way when not fixated.

This explains better why the analysis on cue appearance suggested to use
an identity radius of 0.15° rather than a bigger one: with this radius, the
performance starts to decay as soon as the eccentricity is non-zero; with
bigger sizes, the decay starts at a slightly larger eccentricity.

biases Throughout the experiment where the appearance of cues was an-
alyzed, the subject revealed some clear biases in his choices. A discussion of

1 “A less desirable curve” should be read “the curve of a less desirable cue design”.
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Figure 23: Performance as a function of eccentricity, for three different hypothetical
cue designs.

these biases might itself be biased by the fact that these experiments were not
run on any other subject, but is nonetheless valuable in order to understand
why some properties of the cues were chosen.

First, the performance decreased quicker over eccentricity when choosing
between red and green cues, compared to when choosing between yellow
and blue cues. We wont attempt to explain such a difference in detail, but it
is known that S-cones (whose receptive field in color space is blue) are basi-
cally absent from the human fovea, whereas M- and L-cones (resp. tuned for
green and red light) are mostly present in the fovea and much less so outside
of it [10, 11]. This anatomical fact might explain why the performance drop
is dampened in Y/B trials.

Second, the subject expressed a clear preference for “seeing” green when
cues were presented at more than 3.4°. The emission of these two colors
from the screen was measured with a spectrophotometer, and the measure-
ments reported very similar luminance values: 50.1 for red, and 52.5 for
green (in units of lightness, the L* dimension of the CIE L*a*b* color space).
The subject reported that, from a certain eccentricity, cues looked white; this
could explain why more eccentric cues were mostly seen as green (whose lu-
minance in this experiment was indeed slightly brighter than red), but such
a strong effect might not be entirely explained by this small difference. How-
ever, this bias might not be worth being explored until the same experiment
is repeated with multiple subjects, instead of just one.

6.2 discussion of the paradigm

Studying the simultaneous exploration and integration of information by
the brain can be done in many ways. Different experimental paradigms
have different advantages.
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This document described a paradigm that addresses the exploration and
integration of information with a visual task. Making use of the visual
system has the great advantage of facilitating the task to primate subjects,
whose decision-making capabilities are more powerful than that of other
species.

Using the visual system also has disadvantages compared to other sen-
sory modalities: for example the stimuli presented in other paradigms (like
the VTF paradigm) do not activate specialized receptors, whereas the stim-
uli we show to our subjects activate photoreceptors whose physiology and
anatomy are inherently different from each other. However, note that using
the visual system helps to shift most of the workload from cognition to per-
ception. This is also possible precisely because of the availability of receptors
specialized for the different types of stimuli we present. This helps to study
a more low-level, perceptual form of decision-making.

One general advantage of this paradigm is that each trial lasts several
seconds. Given that a decision can only be taken at the end of a trial, this
slow way of updating decision variables could facilitate, in the future, the
study of neurophysiological recordings in vivo during the task.

Finally, a further advantage is that an experimenter doesn’t really need
to close the loop with the eye tracker in order to “dynamically” hide the
identities, because the very design of a cue already forces subjects to fixate
each cue. In other words: it is not necessary to use real-time information
from an eye tracker in the loop to hide the identity of eccentric cues.

future improvements Future improvements to the paradigm include
the transition from discrete trigonometric regions to a continuous 2D space
where the target and non-target distributions are arbitrary bivariate distribu-
tions.

Furthermore, a necessary step will be to find algorithms that model more
closely the subjects’ behavior. Specifically, it is important to also come up
with the simplest models/heuristics one can make: missing a simple model
could be detrimental, and subjects are likely to use simple strategies.

further motivation to study free eye movements An additional,
very speculative motivation that one could give to study how eyes move
freely in a visual scene is the following. Machine learning currently relies
mostly on datasets where all samples have the same dimension (e.g. all im-
ages have the same size) or, equivalently, all samples are already “trimmed”
to be always active on certain dimensions (e.g. all images are cropped so
that at least one pixel in each border is touched by the MNIST digit con-
tained in that image). Given that biological retinas cannot rely on such
a bias, but rather need to saccade from target to target, machine learning
could benefit from the study of how certain transformations on a dataset
(like adding some background padding to all images, then randomly shift-
ing each MNIST digit across the background) could influence the various
biases of models trained on that dataset.





A M AT L A B I M P L E M E N TAT I O N O F
T H E PA R A D I G M

An implementation of this paradigm is available as a Matlab toolbox called
qi. This toolbox allows an experimenter to create some trials and show them
to a subject. More specifically, it allows an experimenter to:

1. define the parameters of a trial (or of a set of trials);

2. use these parameters to create one or more trials;

3. analyze a newly created trial either via a Matlab plot or by saving the
whole trial to a PNG, JPG, or animated GIF file;

4. show a trial to a subject via PsychToolbox v3, or schedule a sequence of
trials to be shown to a subject;

5. analyze the subject’s choices;

6. compare the subject’s choices to the choices of a computational model.

All this requires no additional Matlab library, except point 4 which requires
MatUdp (freely available on GitHub at https://github.com/djoshea/matudp),
which itself requires PsychToolBox v3 and optionally also Simulink Real-Time
or Simulink Desktop Real-Time.

Section A.1 of this appendix describes the core of qi (i.e. all points in
the previous list except 4), then section A.2 completes the explanation by
illustrating how to show trials to a subject with real-time constraints.

a.1 core of the toolbox

In order to be used, the qi toolbox needs to be installed. This can be
done by opening Matlab and navigating to the directory containing the file
qi.mltbx. This file is a compressed version of the whole qi toolbox, and
double-clicking it from Matlab will launch the installation process. The pro-
cess should not take more than a few seconds, but in case of problems the
toolbox can also be used by just adding to the Matlab path the directory
containing its source code.

Note that any change to the source code of the toolbox is not known to
Matlab until the toolbox is packaged again from the source code, or the direc-
tory containing the source code is added to the Matlab path (with addpath).

Once the toolbox is installed, an experimenter can use its functions and
classes by appropriately calling qi.someFunction() or qi.SomeClass() from
a Matlab command window.

Explaining how to use the toolbox is best achieved by going through the
typical use case of a person who wants to: 1. create a trial; 2. inspect it (and
possibly already present it to some computational models); 3. present the
trial to a subject; 4. analyze the data obtained from the subject.
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a.1.1 Creation of a trial

trials and cues In the scope of our paradigm, a single trial (imple-
mented by the qi.Trial class) is defined as a sequence of cues. Each cue
has an identity and some spatio-temporal coordinates:

• The identity of a cue is a property (like its color, for example) that
makes the cue belong to a certain class of cues: all green cues belong
to one class. Note that there are many interesting ways to choose iden-
tities that a subject needs to discern: having cues contain a particular
symbol is another possibility, for example.

• The spatial coordinates of a cue are its Cartesian coordinates in a ref-
erence unit-less square: both coordinates are between −1 and 1, and
can be translated to any screen size by simply multiplying them with
a scaling factor.

• The temporal coordinates of a cue (i.e. its lifetime) are defined by its
relative onset and duration over the course of a trial. Again, these
coordinates are unit-less: they are between 0 and 1, and can thus be
translated to any temporal window by a scaling factor.

specifying the properties of a trial The properties of each cue in
a trial are generated in a probabilistic fashion, drawing from distributions
specified by the experimenter. These distributions (plus some deterministic
parameters, like the number of cues in a trial) are conveniently grouped in
the qi.ParSet class. So the first thing to do in order to create a trial is to
define a ParSet object:

params = qi.ParSet; % creation of a ParSet object

params.nCues = 6;

params.regions = [3 4 1 2];

params.nPhenotypes = 2;

params.cueFreqsInfo = [[0.8 0.2]; [0.5 0.5]];

generating a trial This object can then be passed as an argument when
constructing an object of the Trial class:

trial = qi.Trial(params);

parset objects As mentioned previously, the properties of cues in a trial
are generated in a probabilistic fashion. Setting the cueFreqsInfo property
of a ParSet object like in the example above will cause the cues that appear
in the target region during the trial to have identity 1 with a probability of
0.8, and identity 2 with probability 0.2; in the non-target regions, cues will
have either identity with a probability of 0.5.
ParSet objects probabilistically define a trial through the following public

properties:

• nCues: total number of cues to show during the trial; defaults to zero.
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• regions: set of regions constituting the scene, where the first one is
the target region1; defaults to a random permutation of the classic four
trigonometric quadrants of the plane.

• gridInfo: properties of the 2D grid containing the cues; defaults to a
structure with field edgeLength set to 0.1, field shape set to 'triangular

', and both optional fields xAxis and withOrigin set to false;

• samplingMode: sampling mode, either homogeneous or heterogeneous;
defaults to 'heterogeneous'.

• nPhenotypes: number of possible cue identities; defaults to two.

• cueFreqsInfo: information about the identity frequencies across the
plane; defaults to a bivariate standard distribution only valid for the
continuous case (described later), and must be set manually in the
discrete case. In the discrete case this property should be provided as
a 2 × nPhenotypes matrix where the first row is PT and the second one
is P¬T (see 2.1.2).

• timeCenterDistribution: distribution of cue lifetime centers; defaults
to a uniform distribution over [0.99/(2n), 1− 0.99/(2n)] ⊆ [0, 1], where
n is the number of cues in the trial.

• durationDistribution: distribution of cue lifetime durations; defaults
to a low-variance normal distribution centered on 0.99/2 (this should
explain why there is a 0.99/(2n) margin between the distribution of
cue lifetime centers and the interval [0, 1]).

To know more about each of these properties, type doc qi.ParSet and click
on one of the public properties listed.

Note that all properties have a useful default value, so in many cases
the experimenter can get away with just creating a ParSet object and then
modifying two or three of its properties (as in the example above).

trial objects A newly created Trial object is basically a Matlab table
(elements are accessed like in a normal table), with the addition of a few
useful methods. Each row in the table represents a cue, and each column
represents a cue property. So a trial behaves very much like a table with n
rows (where n is the number of cues) and 5 columns (onset, duration, id, x,
y). The rows are sorted by cue onset. Here’s a trial created with the example
code we used above, displayed with the asTable method of the Trial class:

onset duration id x y
_____ ________ __ ____ ________

0.177 0.1 2 0.8 -0.17321

0.219 0.1 1 -0.6 0.34641

0.226 0.1 2 0.45 0.77942

1 The remaining elements specified in the regions array property are not relevant. They only
need to be n− 1 elements, where n is the number of regions that the trial will have. This is
not the best design, and should be changed in future versions of the toolbox.
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(a) scatter plot of the reference square,
i.e. all points (of the plane)
whose Cartesian coordinates are
in [−1, 1].

(b) scatter plot of the vertices of a
grid, which is a subset of the ref-
erence square.

Figure 24: Comparison of the reference square and an example grid from which
the spatial coordinates of some cues could be sampled.

0.315 0.1 2 0.15 -0.25981

0.733 0.1 2 -0.3 0.51962

0.837 0.1 1 -0.3 -0.69282

modifying and saving trials Besides asTable, this class provides three
more methods: plot, save, and addCue. The plot method plots the trial
to a Matlab window. The save method allows to save a trial to a file, as
a JPG/PNG image or as a GIF animation. The addCue method allows to
add a cue to the trial, either in a deterministic way (by exactly specifying
the properties of the new cue) or probabilistically (e.g. by just specifying
the region, letting the cue sample its identity from the distribution of that
region).

grids Note that the Cartesian coordinates of cues in a trial are not sam-
pled from the whole reference square (as in figure 24a), but rather from the
vertices of a grid which is a subset of points in that square (as in figure 24b).
A grid is a set of vertices where each vertex is equidistant from its neighbors,
and the grids we use in this paradigm are enclosed in a circle (i.e. they have
a circular perimeter).

The grid parameters for a trial are specified as a property of the ParSet

object passed to the Trial constructor. More specifically, they are specified
as a structure with the following fields:

• edgeLength must be a float in (0, 1] representing the distance between
each point in the grid;

• shape must be a string with value equal to either 'square' or 'triangular
', describing the geometry of the grid;

• xAxis (optional field) must be a logical indicating whether we want
to include grid points that lie on the horizontal axis, and exclude the
points inside the regions;
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• withOrigin (optional field) must be a logical indicating whether we
want to include the origin among the grid points.

Setting both optional fields to true creates a horizontal axis that touches
the origin and spans the whole scene.

a.1.2 Inspection of a trial

Before showing a trial to a subject, the experimenter can plot it in a Matlab
window to get an idea of its structure. To plot a trial, the experimenter can
invoke the plot method of a Trial object. The method returns a handle to
the generated plot (useful if one wants to apply further modifications), and
takes the following arguments:

1. animate: true makes the plot an animation, where the cues appear and
disappear like they will when shown to a subject; false (the default
value) makes the plot static.

2. visible: true (the default value) invokes the figure command before
plotting plotting the cues and returning the plot handle; false skips
the invocation of figure, so that the returned plot handle can be ma-
nipulated directly by the experimenter (for example by using it as a
sub-figure).

An axample is:

trial.plot(); % generates a static plot in a Matlab window

figure('name', 'More explicative plot');

trial.plot(true); % generates an animated plot in a Matlab window

% ... but any modification to a plot is possible:

plotHandle = trial.plot();

plotHandle.CData(1, :) = [1, 1 ,1]; % first cue is now white

Trial plots can also be saved as image files, by invoking the save method
of Trial objects. The only argument is the name of a file. From the extension
provided in the name of the file, the method automatically generates a PNG
static plot, JPG static plot, or GIF animated plot:

trial.save('trialPlot.png'); % generates a static PNG image

trial.save('trialDemo.gif'); % generates an animated GIF image

Under the hood, the save method calls the plot method of the same object
with visible=false.

Another useful method of the Trial class is asTable. Although a trial
object can always be accessed and modified like it was a table, printing it to
the screen will show its properties instead of its elements as a table. This is
due to the fact that a Trial object is still an object.

evaluation by a model Running a computational model on a trial is
done by invoking the function that implements that model, like so:
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trial = qi.Trial(qi.ParSet(7));

bayesBeliefs = qi.bayes(trial, 4, [0.8 0.2], [0.5, 0.5]); %

Bayesian integrator

sprtBeliefs = qi.logRatios(trial, 4, [0.8 0.2], [0.5, 0.5]); %

SPRT

The models return a 2D matrix where each row holds the beliefs of a model
at the onset of a certain cue. A row has as many columns as there are regions,
and each column contains the beliefs of the model for that region.

a.1.3 Showing trials to a subject

Once some Trial objects have been created, they can be shown in sequence
(with breaks between them) to a subject. In order to do this they first need
to be ordered in a cell array, like here for example:

trial1 = qi.Trial(qi.ParSet(25));

trial2 = qi.Trial(qi.ParSet(25));

trial3 = qi.Trial(qi.ParSet(25));

trials = {trial1, trial2, trial3};

Then, assuming there is a second screen connected to the computer, it is
simply a matter of creating a task and launching it:

qi.setMatudpPath('../../matudp-master');

task = qi.CueIntegrationTask(params.gridInfo, trials);

task.setup(); % starts PsychToolbox on a screen

This will setup a black background with a large yellow cross in one of the
peripheral screens. This indicates that the subject can press the space bar to
start a first batch of trials. This yellow cross will appear after every batch, to
allow for a break.

color conventions In general, three different colored borders can be
depicted during an experiment:

• a large yellow bright cross;

• a large blue bright cross;

• a large white dim cross.

Yellow indicates a break, and is escaped by pressing the space bar. A break
occurs every batchSize trials, where batchSize is a public property of every
Trial object (and defaults to 40). A yellow cross is also the first stimulus
that appears on screen at the start of the experiment: this allows to easily
start the whole experiment by pressing the space bar.

Blue indicates that the subject should choose which region contains the
target. A blue cross appears after each trial, and is displayed for a limited
amount of time (2.4 seconds); if this amount of time elapses without the
subject making any choice, the unanswered trial is assigned a new random
position among the trials yet to be shown.

White indicates that a trial is being shown to the subject, and no action
should be taken from the subject’s side — other than exploring the scene, of
course.
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automatic mode Before jumping into the details of how to control a task
remotely (section A.2), it’s good to get familiar with how to run some trials
in automatic mode without any remote control from another machine.

To do this, one should first exit the black screen (by pressing the esc

key2). Then, the preceding code snippet should be edited to include an
extra argument in the constructor of the task:

qi.setMatudpPath('../../matudp-master');

automatic = true;

task = qi.CueIntegrationTask(params.gridInfo, trials, automatic);

task.setup(); % starts PsychToolbox on a screen

qi.buildResults(task); % appends the results to a MAT file

Running 'task.setup()' will now start the first trial immediately, with the
second one starting as soon as the subject has signaled a choice for the first
trial. So on for all subsequent trials until the screen will be black, without
any stimuli. At that point one can press esc to close the screen.

saving the results As can be seen in the previous example, the follow-
ing optional line can be added after 'task.setup()' to save the results:

qi.buildResults(task);

This function prints the subject’s choices, and appends them to a file with
title results.mat. Note that the esc key can be pressed at any time during a
sequence of trials. buildResults has knowledge of how many trials have
been shown to (and given a choice by) the subject, so the mat file with the
results will be extended with all and only the trials that were completed
before the the esc key was pressed.

customizing task properties Each CueIntegrationTask object runs
its trials with some default properties. For example, by default each trial
lasts n seconds (where n is the number of cues). These default values can be
changed by editing the following public properties of a CueIntegrationTask

object:

• radius is the radius (in millimeters) of the whole region where stimuli
can appear (default 120 mm);

• cueColors is a list of RGB triplets available as cue identities for all the
trials (default qi.getColors(2));

• cueAppearances is a sequence of handles to Matlab classes that will
decide the appearance of the cues in each trial (default repmat({@qi.
DottedCue}, [length(trials), 1]));

• idSizes is a sequence of radii (in millimeters) for the inner identity of
cues in each trial (default 0.7461 * ones([length(trials), 1]), i.e.
0.15 degrees of visual angle);

• cueSparsities is a sequence of factors for the cue sparsities in each
trial (default ones([length(trials), 1]));

2 If the esc key doesn’t work, press ctrl-q or cmd-q, depending on your operating system.
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• cueConfounders is a sequence of number of confounders around the
cues in each trial (default 6 * ones([length(trials), 1]));

• durations is how many seconds each trial lasts (default 5 seconds ev-
ery 8 cues);

• gridParams is a structure with the geometrical parameters that define
the grid of each trial (gridParams.edgeLength is the distance between
each vertex in the reference square, and gridParams.shape is either
triangular or square);

• trials is a list of trials, each in the form of a Trial object;

• drawGrid is a logical value indicating whether the vertices that form
the grid should be visible or not (default false);

• answers (read-only property) is a vector where the answers given by
the subject for each trial will be recorded;

• automatic is a logical value indicating whether or not the trials are
shown automatically, instead of depending on remote control over a
network.

summary To sum up, here is a full example of what one could want to
do:

% make sure MatUdp is in the path:

qi.setMatudpPath('../../matudp-master');

% create and customize a ParSet object:

params = qi.ParSet;

params.nCues = 25;

params.gridInfo = struct('edgeLength', 0.093, 'shape', 'triangular

');

params.nPhenotypes = 2;

params.cueFreqsInfo = [[0.7 0.3]; [0.5 0.5]];

% serialize the trials in a cell array:

trials = {};

trials{1} = qi.Trial(params);

trials{2} = qi.Trial(params);

trials{3} = qi.Trial(params);

% assign the trials to a CueIntegrationTask, and run it:

automatic = true;

task = qi.CueIntegrationTask(params.gridInfo, trials, automatic);

task.cueColors = qi.getColors(2);

task.setup();

% create/update results.mat file:

qi.buildResults(task);
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a.1.4 Data analysis

The qi.buildResults function creates a mat file. This file contains four
variables:

• pastTrials, the sequence of trials that the subject has seen and an-
swered so far;

• pastTargets, the sequence of target regions corresponding to each of
the trials answered;

• pastChoices, the sequence of subject choices, i.e. a vector of regions
that the subject has chosen as target region for each of the trials;

• nPastTrials, the number of trials recorded in this file.

Every time buildResults is invoked, the results.mat file in the current
working directory gets extended with the latest data (if there is any data to
be added). Such a mat file can be analyzed with the function qi.analyzeResults,
that takes as input the name of a mat file containing four variables named
as in the list above:

qi.analyzeResults('results.mat');

This will generate some plots of the performance against various factors (like
regions or identity frequency in the target region).

comparison to a model Comparing the choices of a subject with those
of a model can be done as follows:

1. Submit the sequence of trials in task.trials to the evalTrials func-
tion, specifying a model. This will produce a mat file with the same
format of files produced by buildResults.

2. Invoke analyzeResults on that file, like if the computational model
was a subject.

This is the easiest way to see a qualitative comparison of a subject with a
model. Here is an example:

load('results_subject_1.mat');

trials = pastTrials;

qi.evalTrials(trials, @qi.bayes); % creates 'results_bayes.mat'

% analyze the choices made by the model:

qi.analyzeResults('results_bayes.mat');

% compare them with those made by the subject:

qi.analyzeResults('results_subject_1.mat');

a.1.5 Utility functions

Finally, useful functions provided by the toolbox but not covered in the pre-
vious explanation are:
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• getColors: returns a specified number of RGB colors, equidistant in
the CIE L*a*b* color space, and with the same luminance.

• getGrid: returns the coordinates of a 2D grid with parameters edgeLength,
shape, xAxis, withOrigin — under the hood, it is used by the Trial

constructor.

• getRegions: says in which polar regions some pairs of Cartesian co-
ordinates are, assuming the plane is divided in a specified number of
equipollent polar regions.

• plotMomentaryNumCues: plots the momentary number of cues on screen,
either for a single given trial or averaging across many trials.

• scatterCueTimings: makes a scatter plot of the cue onsets and offsets,
in one or more trials.

• showColors: fills some rectangles with specified colors, to have an
overview of what colors are being used.

• showGrid: makes a scatter plot of the vertices that constitute a grid,
given the list of coordinates of a grid.

a.2 ensuring real-time constraints

Instead of having the subject or the experimenter manually press a key to
start a new batch of trials or to stop the experiment, the experimenter can
define precise events that will for example trigger the start of a trial. This
is done with a Simulink model that runs on a real-time machine or on a
real-time kernel installed in a normal machine.

MatUdp allows to use Simulink to accurately encode and control the real-
time logic of an arbitrarily complex experiment comprising multiple trials
and involving rewards, sensors (like an eye tracker), specific inter-trial wait-
ing times, and possibly anything encodable in a Simulink model. The exper-
imenter can design the logic of the experiment by linking Simulink blocks to
form a Simulink model. The model controls the screen, controls the sensors,
and logs data to a filesystem.

Now Simulink Real-Time or Simulink Desktop Real-Time can translate such a
complex Simulink model to C code, compilable by a real-time kernel.

A real-time kernel is a kernel that executes processes under specified time
constraints, running either on a “normal” desktop/laptop (equipped with
Simulink Desktop Real-Time) or on a dedicated real-time machine.

The task can be controlled by sending the following types of commands:

• startTrial starts to show the stimuli of the current trial;

• stopTrial stops the current trial, even if it isn’t finished yet;

• nextTrial prepares the next trial to be show on screen;

• startAutoMode toggles automatic mode on;
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Figure 25: Example setup of an experiment involving sensors and visual stimuli.
Small blocks enclosed in larger ones are software components (here for
instance the components of the MatUdp library).

• stopAutoMode toggles automatic mode off.

The next section describes the Simulink blocks that should be used to send
commands to a running CueIntegrationTask.

a.2.1 Simulink block library

Alongside the blocks provided by Simulink, the qi toolbox also comes with
a small library of Simulink blocks useful to deal with real-time (RT) control.
These are stored in the blocks.slx file.

The two most useful blocks are UDP Sender and UDP Receiver. They allow
to easily switch between RT, desktop-RT, and non-RT operational modes
when sending/receiving UDP packets.

UDP Sender takes a signal, serializes it in a UDP packet, and sends it over
a network to another machine. The User Datagram Protocol (UDP) is an in-
ternet protocol designed for real-time communication (unlike TCP, designed
for slow but reliable communication). Using a local network makes UDP
quite reliable anyway, so it is the ideal protocol that two machines should
speak when operating real-time data in a (possibly closed-loop) experiment
involving several devices. Figure 25 gives an example of experimental setup
where devices should exchange data in real time.

The UDP Sender block serializes Simulink signals in a way that complies
with BusSerialize. BusSerialize is the part of MatUdp that allows to seri-
alize and de-serialize Simulink signals into UDP packets, thus extending the
real-time capabilities of Simulink with networking.

UDP Receiver does the opposite job: this block instructs the Simulink
model to listen to a port and de-serialize any incoming UDP packet into
a Simulink signal.
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Double-clicking these blocks will bring up a dialog where the experi-
menter can set the RT mode to real-time, desktop real-time, or generic real-
time (i.e. normal non-RT mode). Choosing between these modes will not
only setup the block to comply with the desired mode, but will also appro-
priately change some parameters in the whole model — namely the target
file of the Simulink model.

Other fields in these dialogs are meant to easily set the receiving port (for
the UDP Receiver block) or the target address and port (for the UDP Sender
block).

string commands In order to send commands to a running CueIntegrationTask

(like for example “startTrial”), a UDP Sender block must receive a string. To
achieve this, it is possible to use the String Constant block provided by our
library of blocks. This block takes care of translating any string into a data
structure suitable to be handled by a UDP Sender block.

a.2.2 Real-time basics in Simulink

As mentioned above, a RT kernel is a kernel that executes processes under
specified time constraints. When a simulation runs on a RT kernel, the
simulation clock runs at the same speed of the host machine’s clock.

With Simulink:

• In non-RT normal mode the simulation algorithm runs entirely within
Simulink.

• In Desktop Real-Time (DRT) normal mode the simulation algorithm
runs within Simulink, but a separate kernel-mode process runs I/O
drivers for the DRT I/O blocks.

• In DRT accelerator mode the simulation algorithm is compiled to a
MEX file S-function; the S-function runs within Simulink, as in DRT
normal mode. Again, a separate kernel-mode process runs I/O drivers
for the DRT I/O blocks.

• In DRT external mode the simulation algorithm is translated to C code
which is then compiled; the C executable runs in a separate kernel-
mode process, as well as the I/O drivers for the DRT I/O blocks.

• In RT mode the simulation algorithm is translated to C code and com-
piled; the C executable runs on a dedicated real-time machine, as well
as the I/O drivers for the DRT I/O blocks.

Whereas DRT external mode and RT mode require a fixed-step solver, the
other modes allow both variable- and fixed-step solvers.

a.2.3 Installing Simulink Desktop Real-Time

To install Simulink DRT, open a Matlab command window and run sldrtkernel

-install and follow the installation instructions. After the process has fin-
ished, you can check the installation by typing rtwho. From now, Simulink
models will offer the option to be compiled for a DRT target.
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In fact, thanks to the library of Simulink blocks provided with the qi

toolbox, an experimenter only needs to use these blocks and select the right
target (between RT, DRT, and generic). The blocks will automatically take
care of updating the way the model will be compiled.
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