
DBNsim

Giorgio Giuffrè

Contents
0 Abstract 2

0.1 How to run it on your machine 2
0.2 How to contribute . 2

1 Installing DBNsim 2
1.1 Requirements . 2
1.2 Basic installation . 3
1.3 Adding GPU support . 3
1.4 Launching DBNsim . 4
1.5 Changing the default configuration 5

2 Building a network 5
2.1 What do we need for building a DBN 5
2.2 Architecture . 5
2.3 Connections . 6

3 Training a network 6
3.1 Setting the hyper-parameters . 6
3.2 Launching the training . 7

4 Analysing a network 7
4.1 Analysing the DBN architecture 7
4.2 Plotting the reconstruction error 8
4.3 Analysing the receptive fields . 8
4.4 Viewing a histogram of the weights in a RBM 8
4.5 Viewing a training example . 8

5 Changing the default configuration 8
5.1 What you can do as an admin . 8
5.2 Datasets . 9
5.3 Password and hyper-parameters 10
5.4 graphical parameters . 10

6 Contributing to the source code 10
6.1 Which files do I have to focus on? 10
6.2 Structure of the repository . 11
6.3 Things to do . 11

1

0 Abstract
DBNsim is a web application for training and analysing Deep Belief Networks
(“DBNs”, for short). A Deep Belief Network (http://www.scholarpedia.org/
article/Deep_belief_networks) is a particular type of artificial neural net-
work; it is a stack of Restricted Boltzmann Machines (“RBMs”, for short) that
can be trained with an algorithm known as contrastive divergence. RBMs
learn to reconstruct a given input and, if properly analysed, they can reveal
latent features in the distribution of the input.

DBNsim offers a simple interface for defining the architecture of a DBN, train
it on a remote web server (optionally equipped with a GPU), analyse it, and
then download the DBN in various formats for performing further analyses.

0.1 How to run it on your machine
As said, DBNsim is a web app. That means you can run it on one computer and
access it on another. According to your needs, there are several ways in which
you can use DBNsim:

1. If you want to use it locally (i.e. as if it was a normal desktop application
on your PC), you just have to launch the app from the command line with
Python; then, you will be able to access the user interface on your browser
at the local address http://127.0.0.1:8000.

2. You may want your students to use it in a classroom. For this, you just
have to launch the app from the command line and ask your audience to
connect their devices to the University network; they will find the user
interface at http://your.public.ip.address:8000.

3. Finally, if you don’t have a local intranet like above, you can still publish
DBNsim on a remote web server: it will then be available from any
computer connected to the internet.

In all three cases, you can follow the step-by-step guide in the next section.
Launching DBNsim from a computer equipped with a CUDA-enabled GPU1

lets you train a DBN directly on the GPU; DBNsim should automatically detect
whether or not your computer has a GPU. The main advantage of using it is
speed: you will be able to train much larger networks in fewer time.

0.2 How to contribute
If you would like to improve this project and/or report a bug, please feel
free to e-mail Giorgio Giuffrè at [first_name]giuffre23@gmail.com, replacing
[first_name] with my first name. The source code is freely available on GitHub
at https://github.com/ggiuffre/DBNsim.

1 Installing DBNsim

1.1 Requirements
For running DBNsim on you own server you will need:

1See https://en.wikipedia.org/wiki/CUDA

2

http://www.scholarpedia.org/article/Deep_belief_networks
http://www.scholarpedia.org/article/Deep_belief_networks
https://github.com/ggiuffre/DBNsim
https://en.wikipedia.org/wiki/CUDA

• Some knowledge of the command line interface of your machine;

• An intepreter for Python 2.7 (not Python 3);

• the pip package manager for Python 2, which should be shipped with a
standard Python installation;

• optionally (for GPU support) the NVIDIA drivers for CUDA.

Please note that you have to use Python 2 (preferably 2.7), not Python 3!
This is beacause, unfortunately, DBNsim currently depends on two libraries that
are only available for Python 2.

If you have installed Python under Windows but your command line says
it doesn’t recognize the commands pip and python, then you just have to add
Python to your path. This is generally done by going to System Properties /
Advanced / Environment Variables.

1.2 Basic installation
For installing DBNsim (both for CPU and GPU usage) follow these steps:

git clone https://github.com/ggiuffre/DBNsim.git
cd DBNsim
pip install --user -r requirements.txt

In addition, it is recommended to install scipy, with the command pip
install –user scipy. Windows user may find it difficult but this is currently
an optional dependency; the only thing is that without it you won’t be able to
handle MATLAB files as an administrator (see here).

If you don’t have Git installed, you can still go to the GitHub repo, click
"Clone or Download", then "Download ZIP"; now extract the archive, and then
cd into the extracted directory.

1.3 Adding GPU support
If you have a CUDA-enabled GPU, you can install CUDAMat. To install it,
first exit the DBNsim directory (this is very important) — a simple way to exit
the directory is to cd into your home directory; then execute the following
commands:

git clone https://github.com/cudamat/cudamat.git
cd cudamat
pip install --user .

As before, if you don’t have Git installed you can download a zipped version
of CUDAMat from GitHub.

If you get errors while installing with pip, make sure you have the CUDA
drivers installed, along with the NVIDIA CUDA compiler (nvcc). If you’re using
Ubuntu, then you can install them with:

3

https://www.google.com/search?q=windows+add+python+path+-pythonpath
https://www.google.com/search?q=windows+add+python+path+-pythonpath
05_admin.html
https://github.com/ggiuffre/DBNsim
https://github.com/cudamat/cudamat

sudo apt-get install nvidia-cuda-toolkit

After you manage to install CUDAMat, remember to test it. To do this, exit
the cudamat directory (this is very important), enter a Python interpreter and
type:

import numpy as np
import cudamat as cm

cm.cublas_init()

a = cm.CUDAMatrix(np.random.rand(32, 256))
b = cm.CUDAMatrix(np.random.rand(256, 32))

c = cm.dot(a, b)
d = c.sum(axis = 0)

print(d.asarray())

1.4 Launching DBNsim
Finally, launch DBNsim with:

cd path/to/DBNsim
python DBNsite/manage.py runserver

... this actually launches DBNsim only locally. Instead, if you want other
users to access it, type:

cd path/to/DBNsim
python DBNsite/manage.py runserver your.public.ip.address:8000

You should see something like:

Performing system checks...

loading data from pickle...
loading data from pickle...
loading data from pickle...
loading data from pickle...
System check identified no issues (0 silenced).
June 22, 2017 - 16:02:15
Django version 1.11.2, using settings ’DBNsite.settings’
Starting development server at http://your.public.ip.address:8000/
Quit the server with CONTROL-C.

4

This means the server is up and running. Now you should find the user in-
terface at http://127.0.0.1:8000 if you’re running the app locally. Or, if you’re
publishing it to a network, you should find it at http://your.public.ip.address:8000.
8000 is just an example — you can run DBNsim on any port you have access to.

Once you’re on the page, you will be asked for a password. If the server
administrator didn’t change the default configuration, the password is user.

When you want to shut down the server, return to the command line interface
and press CONTROL-C.

1.5 Changing the default configuration
As the server administrator, you have more power than normal users. It is
possible to configure DBNsim under the following aspects:

• you can edit the available training datasets, removing them and/or adding
new ones;

• you can set a password that the users have to know in order to use the
app;

• you can alter the default values of the hyper-parameters (e.g. you can set
a default value of 0.5 for the learning rate, if the user doesn’t change it on
the form);

• you can change some graphical parameters in the user interface.

For more about how to change the configuration, please read here.

2 Building a network

2.1 What do we need for building a DBN
Creating a DBN means specifying two things:

• Its architecture — how many layers of neurons the network will have,
and how many neurons each of these layers will have.

• The weights of its connections — the initial values of the weighted
connections between neurons.

2.2 Architecture
For defining the architecture, look at the form on the upper-left corner. The
"DBN architecture" fieldset allows you to specify the number of (hidden) layers
in the DBN, and then to specify how many neurons each layer must have. h1,
h2 etcetera are the hidden layers, with number 1 being the hidden layer of the
first RBM and so on.

You will notice that you cannot change directly the number of neurons in
the visible layer: instead, when you want to change it, you must operate on
the "Dataset info" fieldset (above). This is because the number of visible units
can be deduced from the length of each example in the training dataset: if a

5

05_admin.html

DBN wants to learn from a dataset where each example is 900 pixels (a 30x30
flattened image), then the visible layer must have 900 units.

While you build your DBN, a symbolic representation of its architecture is
painted automatically on the upper-right corner of the screen. This is a graph
showing the layers of the DBN, with the lowest one being the visible layer.

2.3 Connections
Now let’s specify the initial values of the connections. We initialize the weights
of the DBN to a random value picked from a normal distribution; the mean of
this distribution is always zero, but you can choose the standard deviation by
editing the "std. dev." field in the "Hyper-parameters" fieldset.

For seeing the result, click on the "init" button at the right of the standard
deviation field — a new DBN will be created on the server. Now try to click on
the connections between two layers: a histogram should appear on the bottom-
center part of the screen, representing the distribution of the weights that you
have just clicked. For example, if you click on the connections between the
visible layer and the first hidden layer, you will get a histogram of the weights of
the first RBM.

3 Training a network

3.1 Setting the hyper-parameters
When you have defined the architecture and the weights of a DBN, you are
ready to train it. You can train it manually stepping one epoch at a time, or
automatically if you just want a fully trained network. In both cases, the first
thing to do is to set the training hyper-parameters.

Hyper-parameters are those numbers and coefficients with which you can
"customize" the training algorithm. They are called hyper to distinguish them
from the weights of the DBN, that are sometimes called "parameters". For
instance, Contrastive Divergence depends on the following hyper-parameters:

• Maximum number of epochs. One epoch is the time in which a network
sees all the examples in a training set; the number of epochs is the number
of opportunities that a DBN has of observing each example.

• Size of a mini-batch. The training set can be divided in little subsets,
known as mini-batches; the DBN will update its weights only after having
seen all the examples in a mini-batch; this allows for a faster and more
precise learning. The size of a mini-batch must divide the number of total
examples. Note that a mini-batch size of 1 is equivalent to online training;
in contrast, setting the size to the exact number of examples is equivalent
to batch training, or "one shot" training.

• Learning rate. The learning rate is a coefficient in the range [0, 1] that
models the plasticity of the network, i.e. how easy it is to update the
weights of the DBN.

• Momentum. If a DBN learning from a dataset was a ball rolling down a
mountain to reach the valley (the minimum) the momentum would simulate

6

gravity, i.e. the acceleration that speeds the ball proportionally to the
steepness of the descent. The momentum ranges from 0 to 1.

• Weight decay factor. The weight decay factor (in the range [0, 1]) makes
the increase of big weights more difficult than the increase of little weights.
This avoids increasing the weights indefinitely.

• Sparsity target. The sparsity target (in the range (0, 1]) is how sparse
we would like the network to be; a network is more sparse when it has
fewer active units — when the hidden representations are more localistic.

• Standard deviation of the weights distribution. We have already
seen this hyper-parameter while building a DBN; this is more related to the
DBN than to the training algorithm, but it’s nonetheless a hyper-parameter
setting the standard deviation of the probability distribution within which
the weights are initialized.

At the right of the "std. dev." field you will find a "init" button. It is not
necessary to initialize the weights before training the network, because they
will be initialized automatically anyway. This button is meant to analyse the
network before the training.

3.2 Launching the training
When you have chosen the hyper-parameters (or if you want to accept the default
ones), you can start training the DBN with one of the two buttons after the
"Hyper-parameters" fieldset:

• "1 epoch" trains the network for just one epoch: use this button if you
want to train the DBN in a step-by-step fashion.

• "all epochs" trains the network for the number of epochs that you have
specified in the "max. epochs" field.

While training the network, you will see that a chart is updated plotting the
reconstruction error against the number of epochs.

4 Analysing a network

4.1 Analysing the DBN architecture
You can analyse a DBN in several ways. The simplest and the first thing to do
when you set up a DBN to learn a dataset is analysing its architecture. The
architecture of a network is the way in which its neurons are connected; in a
DBN, the architecture is defined by:

• the number of hidden layers, that is equal to the number of RBMs
forming the DBN;

• the number of units in each layer.

For a straightforward representation of the architecture, you can look at the
graph in the upper-right corner.

7

4.2 Plotting the reconstruction error
In the bottom-left corner, you can see a plot reporting the reconstruction error
for each RBM and for each training epoch. For each DBN that you train, the
plot will add one line for each RBM in the DBN. This is meant to compare the
reconstruction error of two different RBMs inside one DBN and the plots of two
different DBNs; if the chart gets too crowded, you can clean it with the "clean
plot" button near the chart.

4.3 Analysing the receptive fields
You can view the receptive fields of some of the neurons in one hidden layer.
For this, just choose a layer of the graph in the top-right corner and click it:
DBNsim will pick some neurons from the layer (max. 24 neurons) and display
their receptive fields.

If you want to see a larger version of a receptive field, simply click on it. A
new tab will open, and from there you’ll even be able to download the receptive
field as an image.

Note that, for consistency, the neurons picked by DBNsim are the same
every time you click on the same DBN. This allows you to see the changes
in one receptive field while the network is learning; for this purpose, the receptive
fields are updated automatically during the training, every five epochs.

4.4 Viewing a histogram of the weights in a RBM
To analyse the weights of a RBM in your DBN, you can view a histogram of the
weights by clicking between two layers on the graph in the upper-right corner.
Clicking between layer n and layer n+ 1 will display a histogram of the weights
in the n+ 1th RBM.

As for the receptive fields, the histogram is updated automatically during
the training, every five epochs.

4.5 Viewing a training example
Finally, you can visualize a random training example by clicking on the visible
layer of the graph in the upper-right corner. Every time you click on the visible
layer, a random training example will be picked from the current dataset and
displayed under the visible layer.

5 Changing the default configuration

5.1 What you can do as an admin
DBNsim has two different kinds of user: normal users of the web interface and
administrators with access to the configuration of the server. If you are an admin,
here’s how you can customize your instance of DBNsim for your users:

• you can edit the available training datasets, removing them and/or
adding new ones;

8

• you can set a password that the users have to know in order to use the
app;

• you can alter the default values of the hyper-parameters (e.g. you can
set a default value of 0.1 for the learning rate, if the user doesn’t change it
on the form);

• you can change the number of epochs between each automatic update of
the receptive fields and histogram;

• you can change the colors of the graph edges (two different colors: one for
training and the other for resting).

Keep reading for more details.

5.2 Datasets
Adding a new dataset is as easy as dragging a file in a special directory in DBNsim.
From inside the DBNsim/ root, this directory is ./DBNsite/DBNlogic/data/.

Here you can put a dataset in one or more of these 3 formats:

• CSV: a CSV file (with extension .csv) where each example is a comma-
separated row, and each row is separated from the following by a newline.

• Pickle: a Python "pickle" file (with extension .pkl and encoded with
version 2 of the Pickle protocol) that is the serialization of a Numpy 2D
array (matrix) containing each example as a row of the matrix.

• MATLAB: a MATLAB file (with extension .mat) containing a matrix
variable called "data", where each row is a training example.

N.B. if DBNsim doesn’t recognize your MATLAB files, try to install scipy.
This is because scipy is currently an optional dependency, for compatibility with
Windows. Under UNIX, you can install it with pip install –user scipy.

Note that the training sets are (currently) meant for unsupervised learning,
so they cannot contain labels — unless you want the labels to be interpreted as
features. Note that an exception to this behaviour is the MATLAB file, where
you can put as many variables as you like as long as there is one matrix named
"data"; that is, you can actually have the labels in the MATLAB file, but you
have to store them in a different variable.

Of course, removing a dataset can be performed by just deleting the corre-
sponding file(s) whose name(s) match the name of the dataset. For example, if you
want to remove the Numerosity dataset, make sure to remove Numerosity.csv,
Numerosity.pkl and Numerosity.mat.

DBNsim searches for new datasets only at startup: if you want to add a
dataset, you must restart the server. The order in which DBNsim searches the
data/ directory for an instance of each dataset is:

1. Pickle file;

2. CSV file;

3. MATLAB file.

9

This is beacause the Pickle file is much faster to load (for the Python
interpreter) than the other two. However, the downside is that its size can be
much bigger.

5.3 Password and hyper-parameters
By editing some Python files, you can change the password and the default
values of the hyper-parameters.

In order to change the password, open ./DBNsite/DBNtrain/views.py and
change the value of the variable PASSWORD to a string of your choice. The default
is "user".

For the hyper-parameters, open ./DBNsite/DBNlogic/util.py and search
for the constructor of the Configuration class. There you will find the default
values for the constructor arguments. These values are the default values of the
hyper-parameters that the user sees when he load the main page of the app: feel
free to change them. Read the comments in the body of the constructor, if you
want to know the meaning of each hyper-parameter.

5.4 graphical parameters
If you want the receptive fields and the weights histogram to be updated every
n epochs, open ./DBNsite/DBNtrain/static/dbntrain.js and look for the
variable chartsUpdateRate. Set it to a positive value that will be the number
of epochs that DBNsim will wait before automatically updating the receptive
fields and the histogram during training.

Finally, the edges in the upper-right graph change color according to what they
are "doing": if an RBM is learning, its weights will be colored in red; else, they will
be blue. If you want to change these colors, open ./DBNsite/DBNtrain/static/dbntrain.js
and change the values of the variables edgesColor and trainingEdgesColor.

6 Contributing to the source code

6.1 Which files do I have to focus on?
Modifying the source code can seem daunting at first: this repo contains a lot of
directories, subdirectories and files. Don’t fear: this section will clarify which
are the "important" files, i.e. the few files that actually do something — most of
the files in here exist just because they’re required by Django, or because they
are static files needed by the HTML interface.

So here are the files that actually count:

• DBNsim/DBNtrain/views.py is the Python interface between a client and
the server; this file, along with dbntrain.js, is the one you will be working
on most of the time.

• DBNsim/DBNtrain/templates/DBNtrain/index.html is the Django HTML
template that forms the main interface.

• DBNsim/DBNtrain/static/dbntrain.js is the JavaScript source code
that brings to life the HTML interface; it contains several JavaScript
functions that are event-oriented (but not object-oriented at all).

10

• DBNsim/DBNtrain/static/main.css is (currently) the only CSS stylesheet
that affects the HTML interface.

• DBNsim/DBNlogic/nets.py is the Python module that manages the net-
work classes (currently DBN and RBM).

• DBNsim/DBNlogic/sets.py is the Python module that manages the avail-
able training datasets.

• DBNsim/DBNlogic/train.py is the Python module where strategy objects
for training the networks reside.

• DBNsim/DBNlogic/util.py is a Python module that stores useful functions
needed by the other modules.

6.2 Structure of the repository
To have an idea of the big picture, the repo is structured like this. The DBNsim
directory contains the source code, while the docs directory contains all the
documentation needed by the users, administrators and developers. (By
"users" we mean the end users of the web app, while the administrators are users
of the server (those serving DBNsim from a machine) and developers maintain
the source code.)

The DBNsim directory contains two main subdirectories, which are actually
Python packages (they have a __init__.py file that marks them as packages).
They are:

• DBNlogic, the business logic of the application;

• DBNtrain, the application logic that makes DBNsim a web app.

More specifically, DBNlogic is a Python package that is totally independent
from the rest of the application: you can use it as a command line library for
handling and training DBNs, if you like. DBNtrain uses DBNlogic for satisfying
the clients’ requests and is itself a Python package.

DBNtrain is centered around the views module, where the developer has to
define a function for each request (URL) that the server can accept; adding a
function to views.py requires adding a line in urls.py, so that Django knows
that a particular URL has to be mapped to this new Python function.

6.3 Things to do
If you want some ideas about how to improve DBNsim, here are some:

• Configure DBNsim to run on a production-stable WSGI server. The
default Django server is not really secure for production.

• Find a more convenient way to manage the jobs run by clients on the
server. Currently, DBNsim requires that each client be assigned a random
10-character key, so that the server can update the right training job when
the client asks (for example) to perform one training epoch of a job. A
much more professional way to do this would be to use WebSockets, for
example.

11

• Tidy the JavaScript source code, maybe distributing it across two or
three distinct JS modules.

• Where possible, replace jQuery with vanilla JavaScript, as jQuery was
used only to quickly prototype the application but tends to clutter the UI,
slowing down the app on older browsers.

• Improve the use of Cytoscape.js, maybe adding some calls to cy.batch
instead of manually iterating through a large number of nodes and edges.
Currently, the graph drawing efficiency is reasonable but can definitely be
improved.

• Add some more consistency checks to the JS code that handles the HTML
forms and the buttons. I set Travis CI to systematically test the Python
back end, but there are no automatic tests for the front end, so it isn’t
possible to systematically catch hidden bugs.

• Repair the "upload DBN" button. Currently, it is only possible to download
a DBN, not uploading it.

• Remove Gnumpy and try to use another library for GPU computing,
as Gnumpy only works for Python 2. After this, upgrading DBNsim to
Python 3 should be easy.

12

	Abstract
	How to run it on your machine
	How to contribute

	Installing DBNsim
	Requirements
	Basic installation
	Adding GPU support
	Launching DBNsim
	Changing the default configuration

	Building a network
	What do we need for building a DBN
	Architecture
	Connections

	Training a network
	Setting the hyper-parameters
	Launching the training

	Analysing a network
	Analysing the DBN architecture
	Plotting the reconstruction error
	Analysing the receptive fields
	Viewing a histogram of the weights in a RBM
	Viewing a training example

	Changing the default configuration
	What you can do as an admin
	Datasets
	Password and hyper-parameters
	graphical parameters

	Contributing to the source code
	Which files do I have to focus on?
	Structure of the repository
	Things to do

